login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362448
Triangle T(n,k) (n >= 0, 0 <= k <= n) read by rows: T(n,k) = 1 if the English names for n and k have a letter in common, otherwise 0.
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1
OFFSET
0
COMMENTS
Inspired by a problem in the GCHQ Puzzle Book.
REFERENCES
GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See Problem 22, page 129.
LINKS
Michael S. Branicky, Table of n, a(n) for n = 0..11324 (150 rows)
EXAMPLE
The triangle begins:
1,
1,1,
1,1,1,
1,1,1,1,
1,1,1,1,1,
1,1,0,1,1,1,
0,0,0,0,0,1,1,
1,1,0,1,0,1,1,1,
1,1,1,1,0,1,1,1,1,
1,1,0,1,0,1,1,1,1,1,
1,1,1,1,0,1,0,1,1,1,1,
...
MATHEMATICA
iName[n_]:=iName[n]=StringDelete[IntegerName[n, "Words"], Except[LetterCharacter]];
A362448row[n_]:=Table[Boole[StringContainsQ[iName[n], Characters[iName[k]]]], {k, 0, n}];
Array[A362448row, 15, 0] (* Paolo Xausa, Oct 17 2023 *)
PROG
(Python)
from num2words import num2words as n2w
def w(n): return [c for c in n2w(n).replace(" and", "") if c.isalpha()]
def T(n, k): return int(set(w(n)) & set(w(k)) != set())
print([T(n, k) for n in range(13) for k in range(n+1)]) # Michael S. Branicky, Apr 23 2023
CROSSREFS
Cf. A362447.
Sequence in context: A014791 A014332 A014655 * A111024 A015586 A015700
KEYWORD
nonn,tabl,word
AUTHOR
N. J. A. Sloane, Apr 23 2023
EXTENSIONS
a(66) and beyond from Michael S. Branicky, Apr 23 2023
STATUS
approved