login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362397
E.g.f. satisfies A(x) = exp(x - 3*x^2/2 * A(x)).
2
1, 1, -2, -17, 10, 976, 3736, -106910, -1386020, 15470380, 562409596, -722342444, -275109171776, -2700252315656, 152965123673272, 4156435296446896, -80740805437063664, -5565174444376872368, 6196702378365183952, 7539582040570866254032
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp(x - LambertW(3*x^2/2 * exp(x))) = 2 * LambertW(3*x^2/2 * exp(x))/(3*x^2).
a(n) = n! * Sum_{k=0..floor(n/2)} (-3/2)^k * (k+1)^(n-k-1) / (k! * (n-2*k)!).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(3*x^2/2*exp(x)))))
CROSSREFS
Column k=3 of A362394.
Cf. A362380.
Sequence in context: A370111 A057280 A055677 * A257466 A226291 A359437
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 20 2023
STATUS
approved