login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362391
E.g.f. satisfies A(x) = exp(x + x^3/2 * A(x)).
3
1, 1, 1, 4, 25, 121, 751, 7351, 73417, 749449, 9477181, 136883341, 2041250641, 33289802833, 608025141907, 11815916748091, 242532915013201, 5369303859003601, 126896359555326745, 3153096762426186553, 82705881733348530241, 2293511922269658189121
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp(x - LambertW(-x^3/2 * exp(x))) = -2 * LambertW(-x^3/2 * exp(x))/x^3.
a(n) = n! * Sum_{k=0..floor(n/3)} (1/2)^k * (k+1)^(n-2*k-1) / (k! * (n-3*k)!).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-x^3/2*exp(x)))))
CROSSREFS
Column k=3 of A362378.
Sequence in context: A069639 A013582 A260373 * A175733 A240479 A317949
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 20 2023
STATUS
approved