login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = 2, a(2) = 5, a(3) = 7.
0

%I #45 Jun 22 2023 13:32:07

%S 1,2,5,7,10,17,29,46,73,119,194,313,505,818,1325,2143,3466,5609,9077,

%T 14686,23761,38447,62210,100657,162865,263522,426389,689911,1116298,

%U 1806209,2922509,4728718,7651225,12379943,20031170,32411113,52442281,84853394

%N a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = 2, a(2) = 5, a(3) = 7.

%C For n >= 3, a(n) is also the number of ways to tile this "central staircase" figure of length n with squares and dominoes; this is the picture for length n=10:

%C _

%C _________|_|_______

%C |_|_|_|_|_|_|_|_|_|_|

%C |_|

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,1).

%F a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = 2, a(2) = 5, a(3) = 7.

%F G.f.: (1 + x + 3*x^2 + x^3)/((1 +x^2)*(1-x-x^2)).

%F a(2*n) = F(n+2)^2 + F(n)^2, a(2*n+1) = F(n+2)^2 + F(n+1)*L(n+1) for F(n) and L(n) the Fibonacci and Lucas numbers.

%F Sum_{k=0..n} a(k) = A295681(n+5) - 3.

%F 5*a(n) = 3*A000032(n+2) -2*A000034(n+1)*(-1)^floor(n/2). - _R. J. Mathar_, Jun 22 2023

%F a(n)+a(n+2) = 3*A000045(n+3). - _R. J. Mathar_, Jun 22 2023

%e Here is one of the a(10)=194 tilings for length n=10:

%e _

%e _________|_|_______

%e |___|___| |___|_|___|

%e |_|

%t LinearRecurrence[{1, 0, 1, 1}, { 1, 2, 5, 7}, 50]

%Y Cf. A000032, A000045, A195971, A295681, A347902.

%K nonn,easy

%O 0,2

%A _Greg Dresden_ and Jiaqi Wang, Jun 18 2023