login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T read by rows, obtained from the array A for the solutions of the Monkey and Coconuts Problem (s sailors and one coconut to the monkey).
3

%I #14 Nov 17 2023 08:13:58

%S 1,2,7,3,15,79,4,23,160,1021,5,31,241,2045,15621,6,39,322,3069,31246,

%T 279931,7,47,403,4093,46871,559867,5764795,8,55,484,5117,62496,839803,

%U 11529596,134217721,9,63,565,6141,78121,1119739,17294397,268435449,3486784393,10,71,646,7165,93746,1399675,23059198,402653177,6973568794,99999999991

%N Triangle T read by rows, obtained from the array A for the solutions of the Monkey and Coconuts Problem (s sailors and one coconut to the monkey).

%C For the five sailors and one monkey problem see A254029.

%C The rows s of the array A give the positive solutions to the following problem: Recurrence co(k) = ((s-1)/s)*(co(k-1) - 1), for k >= 0, with co(0) = a, and the requirement c0(s) - 1 == 0 (mod s), for s >= 1. Then a = a(s, n) = A(s, n), for n >= 1.

%H Paolo Xausa, <a href="/A362359/b362359.txt">Table of n, a(n) for n = 1..11325</a> (rows 1..150 of the triangle, flattened).

%F T(n, k) = A(k, n - k + 1), with the array A(s, n) = n*s^(s+1) - (s - 1), for s >= 1 and n >= 1. (Array read by antidiagonals downwards.)

%F T(n, k) = (n - k + 1)*k^(k+1) - (k - 1), for k = 1, 2, ..., n.

%F O.g.f. for row s of array A: (x/(1 - x)^2)*(s^(s + 1) - (s - 1)*(1 - x)).

%F E.g.f. for column n of array A: n*(-W(-x)/(1 - (-W(-x)))^3) - (1 - (1 - x)*exp(x)), with the principal branch of Lambert's W-function

%e The array A begins:

%e s\n 1 2 3 4 5 6 7 8 9 ...

%e ---------------------------------------------------------------------------

%e 1: 1 2 3 4 5 6 7 8 9 ...

%e 2: 7 15 23 31 39 47 55 63 71 ...

%e 3: 79 160 241 322 403 484 565 646 727 ...

%e 4: 1021 2045 3069 4093 5117 6141 7165 8189 9213 ...

%e 5: 15621 31246 46871 62496 78121 93746 109371 124996 140621 ...

%e 6: 279931 559867 839803 1119739 1399675 1679611 1959547 2239483 2519419 ...

%e ...

%e s = 7: 5764795 11529596 17294397 23059198 28823999 34588800 40353601 46118402 51883203 57648004, ...

%e ...

%e -----------------------------------------------------------------------------

%e The triangle begins:

%e n\k 1 2 3 4 5 6 7 8 9 10

%e ---------------------------------------------------------------------------

%e 1: 1

%e 2: 2 7

%e 3: 3 15 79

%e 4 4 23 160 1021

%e 5: 5 31 241 2045 15621

%e 6: 6 39 322 3069 31246 279931

%e 7: 7 47 403 4093 46871 559867 5764795

%e 8: 8 55 484 5117 62496 839803 11529596 134217721

%e 9: 9 63 565 6141 78121 1119739 17294397 268435449 3486784393

%e 10: 10 71 646 7165 93746 1399675 23059198 402653177 6973568794 99999999991

%e ...

%e -----------------------------------------------------------------------------

%t A362359row[n_]:=Array[(n-#+1)#^(#+1)-#+1&,n];Array[A362359row,10] (* _Paolo Xausa_, Nov 17 2023 *)

%Y Rows of array A (columns of triangle T starting with index n): A000027, A004771(n-1), A362360, A362361, A254029.

%Y First column of array A (diagonal of triangle T): A014293.

%K nonn,tabl,easy

%O 1,2

%A Richard S. Fischer and _Wolfdieter Lang_, Jun 20 2023