login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362357
Bisection of Chebyshev {S(n, 5)}_{n>=0}; the even part.
0
1, 24, 551, 12649, 290376, 6665999, 153027601, 3512968824, 80645255351, 1851327904249, 42499896542376, 975646292570399, 22397364832576801, 514163744856696024, 11803368766871431751, 270963317893186234249
OFFSET
0,2
COMMENTS
The odd part of this bisection is given by 5*A097778(n), for n >= 0.
FORMULA
a(n) = S(2*n, 5) = S(n, 23) + S(n-1, 23), with the Chebyshev S polynomials (see A049310), S(-1, x) = 0, S(n, 5) = A004254(n+1) and S(n, 23) = A097778(n).
O.g.f.: (1 + x)/(1 - 23*x + x^2).
a(n) = 23*a(n-1) - a(n-2), for n >= 0, with a(-1) = -1 and a(-2) = -24.
MATHEMATICA
Table[ChebyshevU[2*n, 5/2], {n, 0, 20}] (* Vaclav Kotesovec, May 27 2023 *)
PROG
(PARI) a(n) = polchebyshev(2*n, 2, 5/2); \\ Michel Marcus, May 27 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Apr 26 2023
STATUS
approved