Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Jun 29 2023 10:59:56
%S 1,2,6,24,120,3,21,168,1512,15120,166320,13860,180180,12870,858,13728,
%T 233376,4200768,79814592,1596291840,7,154,3542,4,100,2600,70200,
%U 1965600,57002400,1900080,58902480,1884879360,62201018880
%N For n > 1, if n appears in the sequence then a(n) = lastindex(n), where lastindex(n) is the index of the last appearance of n. Otherwise a(n+1) = a(n)/(n+1) if (n+1)|a(n), otherwise a(n)*(n+1), a(1) = 1 and a(2) = 1*2.
%H Michael De Vlieger, <a href="/A362332/b362332.txt">Table of n, a(n) for n = 1..4306</a>
%H Michael De Vlieger, <a href="/A362332/a362332.png">Plot p(i)^e(i) | a(n) at (x,y) = (n,i)</a> for n = 1..2048, with a color function representing e(i), where black represents e(i) = 1, red e(i) = 2, etc., 3X vertical exaggeration.
%e a(2) = 2, as a(1) = 1 and 1 times 2 is 2.
%e a(6) = 3, as a(3) = 6 = n, thus a(6) = 3.
%e a(7) = 21, as a(6) = 3 and 3 times 7 is 21.
%t nn = 33; c[_] := 0; Array[Set[{a[#], c[#]}, {#, #}] &, 2]; j = 2; Do[If[c[n] > 0, Set[k, c[n]], If[Divisible[j, n], Set[k, j/n], Set[k, j*n]]]; Set[{a[n], c[k], j}, {k, n, k}], {n, 3, nn}]; Array[a, nn] (* _Michael De Vlieger_, Jun 23 2023 *)
%o (PARI) pos(n, va) = for (k=1, #va, if (va[k] == n, return (k)););
%o lista(nn) = my(va = vector(nn)); for (n=1, 2, va[n] = n); for (n=3, nn, my(p=pos(n, va)); if (p, va[n] = p, if (va[n-1] % n, va[n] = n*va[n-1], va[n] = va[n-1]/n); ); ); va; \\ _Michel Marcus_, Jun 23 2023
%o (Python)
%o from itertools import count, islice
%o def A362332_gen(): # generator of terms
%o a, ndict = 2, {1:1,2:2}
%o yield from [1,2]
%o for n in count(3):
%o yield (a:= ndict[n] if n in ndict else (a*n if a%n else a//n))
%o ndict[a] = n
%o A362332_list = list(islice(A362332_gen(),30)) # _Chai Wah Wu_, Jun 29 2023
%Y Cf. A008336, A340612.
%K nonn
%O 1,2
%A _Kelvin Voskuijl_, Apr 16 2023