login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362314
a(n) = n! * Sum_{k=0..floor(n/4)} (n/4)^k /(k! * (n-4*k)!).
5
1, 1, 1, 1, 25, 151, 541, 1471, 84001, 925345, 5682601, 25177681, 2245355641, 35901100951, 312222474565, 1917363070351, 232479594721921, 4873115730725761, 54830346428307601, 430468886732009185, 65997947903313461401, 1711564302775814535511
OFFSET
0,5
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = n! * [x^n] exp(x + n*x^4/4).
E.g.f.: exp( ( -LambertW(-x^4) )^(1/4) ) / (1 + LambertW(-x^4)).
From Vaclav Kotesovec, Apr 18 2023: (Start)
a(n) ~ c * n^n / exp(3*n/4), where
c = cosh(1) + cos(1) if mod(n,4)=0,
c = sinh(1) + sin(1) if mod(n,4)=1,
c = cosh(1) - cos(1) if mod(n,4)=2,
c = sinh(1) - sin(1) if mod(n,4)=3. (End)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((-lambertw(-x^4))^(1/4))/(1+lambertw(-x^4))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 15 2023
STATUS
approved