login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362304
a(n) = n! * Sum_{k=0..floor(n/3)} (-n/3)^k * binomial(n-2*k,k)/(n-2*k)!.
4
1, 1, 1, -5, -31, -99, 1201, 13231, 70785, -1362311, -21562399, -161746749, 4263108961, 87979472725, 849097038609, -28416142768649, -723086288422399, -8532476619366159, 346207723221680065, 10474480743776327179, 146105160034616914401
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = A362302(n,2*n).
a(n) = n! * [x^n] exp(x - n*x^3/3).
E.g.f.: exp( ( LambertW(x^3) )^(1/3) ) / (1 + LambertW(x^3)).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(x^3)^(1/3))/(1+lambertw(x^3))))
CROSSREFS
Sequence in context: A304659 A115519 A211923 * A024399 A183520 A099083
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 15 2023
STATUS
approved