|
|
A362288
|
|
a(n) = Product_{k=0..n} binomial(n,k)^k.
|
|
5
|
|
|
1, 1, 2, 27, 9216, 312500000, 4251528000000000, 95432797246104853383515625, 14719075154533285649961930052505436160000, 65577306173662530591576256095315195684570038194755952705536
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Product_{k=0..n} n!^k / k!^n.
a(n) ~ A^n * exp((6*n^3 + 12*n^2 - n - 1)/24) / ((2*Pi)^(n*(n+1)/4) * n^(n*(3*n+2)/12)), where A is the Glaisher-Kinkelin constant A074962.
|
|
MATHEMATICA
|
Table[Product[Binomial[n, k]^k, {k, 0, n}], {n, 0, 10}]
Table[(n!)^(n*(n+1)/2) / BarnesG[n+2]^n, {n, 0, 10}]
|
|
PROG
|
(PARI) a(n) = prod(k=0, n, binomial(n, k)^k); \\ Michel Marcus, Apr 14 2023
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|