Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 May 06 2023 09:00:42
%S 1,1,-1,1,0,1,1,1,3,-1,1,2,13,17,1,1,3,31,173,169,-1,1,4,57,629,3321,
%T 2079,1,1,5,91,1547,18025,81529,31261,-1,1,6,133,3089,58993,662639,
%U 2443333,554483,1,1,7,183,5417,147081,2888979,29752957,86475493,11336753,-1
%N Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = (-1)^n * Sum_{j=0..n} (-k*j)^j * binomial(n,j).
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F E.g.f. of column k: exp(-x) / (1 + LambertW(-k*x)).
%F G.f. of column k: Sum_{j>=0} (k*j*x)^j / (1 + x)^(j+1).
%e Square array begins:
%e 1, 1, 1, 1, 1, 1, ...
%e -1, 0, 1, 2, 3, 4, ...
%e 1, 3, 13, 31, 57, 91, ...
%e -1, 17, 173, 629, 1547, 3089, ...
%e 1, 169, 3321, 18025, 58993, 147081, ...
%e -1, 2079, 81529, 662639, 2888979, 8998399, ...
%o (PARI) T(n, k) = (-1)^n*sum(j=0, n, (-k*j)^j*binomial(n, j));
%Y Columns k=0..3 give A033999, (-1)^n * A069856(n), A362859, A362860.
%Y Main diagonal gives A362862.
%Y Cf. A362856.
%K sign,tabl
%O 0,9
%A _Seiichi Manyama_, May 05 2023