Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Apr 01 2023 08:54:33
%S 3,5,1,9,2,6,9,17,1,1,3,3,10,11,1,33,2,2,10,26,3,6,2,22,6,5,2,21,25,5,
%T 33,65,1,1,18,1,6,5,4,13,15,14,1,3,1,1,5,11,3,3,1,3,1,1,3,41,9,37,11,
%U 10,3,39,1,129,2,2,3,2,9,9,8,11,3,3,2,27,2,2,3
%N a(n) is the least k > 0 such that the binary expansion of k*n is an abelian square (A272653).
%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F a(n) = A361943(n) / n.
%F a(n) = 1 iff n belongs to A272653.
%e a(8) = A361943(8)/8 = 136/8 = 17.
%o (PARI) a(n) = { forstep (m = n, oo, n, my (w = #binary(m)); if (w%2==0 && hammingweight(m)==2*hammingweight(m % (2^(w/2))), return (m/n))) }
%o (Python)
%o from itertools import count
%o def a(n): return next(m//n for m in count(n, n) if not (w:= m.bit_length())&1 and m.bit_count() == ((m>>(w>>1)).bit_count())<<1)
%o print([a(n) for n in range(1, 80)]) # _Michael S. Branicky_, Mar 31 2023 after _Rémy Sigrist_
%Y Cf. A272653, A361943.
%K nonn,base
%O 1,1
%A _Rémy Sigrist_, Mar 31 2023