login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361930
a(n) is the greatest prime p such that p + q^2 + r^3 = prime(n)^4 for some primes q and r.
1
29, 613, 2389, 14629, 28549, 83227, 130171, 279707, 707131, 923509, 1873867, 2825749, 3418627, 4879669, 7890347, 12116969, 13845473, 20150467, 25411387, 28398229, 38949947, 47458027, 62740901, 88529269, 104060267, 112550869, 131079589, 141157867, 163046969, 260144491, 294499771, 352275349
OFFSET
2,1
COMMENTS
Conjecture: a(n) exists for all n > 2.
LINKS
EXAMPLE
a(2) = 29 because 29 + 5^2 + 3^3 = 81 = prime(2)^4, with 29, 5 and 3 prime.
a(3) = 613 because 613 + 2^2 + 2^3 = 625 = prime(3)^4. with 613, 2 and 2 prime.
MAPLE
Qs:= select(isprime, [$2..floor(sqrt(100000))]):
Rs:= select(isprime, [$2..floor(100000^(1/3))]):
QRs:= sort(select(t -> t[1]^2 + t[2]^3 < 100000, [seq(seq([q, r], q=Qs), r=Rs)]),
(a, b) -> a[1]^2 + a[2]^3 < b[1]^2 + b[2]^3):
f:= proc(t) local t4, qr, p;
t4:= t^4;
for qr in QRs do
p:= t4 - qr[1]^2 - qr[2]^3;
if isprime(p) then return p fi
od;
FAIL
end proc:
seq(f(ithprime(i)), i=2..50);
CROSSREFS
Cf. A030514 (prime(n)^4).
Sequence in context: A287050 A142521 A032630 * A014929 A006136 A199038
KEYWORD
nonn
AUTHOR
Zak Seidov and Robert Israel, Mar 30 2023
STATUS
approved