Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Mar 30 2023 05:08:15
%S 4,98,3550,150722,6993504,343542572,17560824138,924397069250,
%T 49770307114528,2728028537409848,151717661909940724,
%U 8539838104822762220,485583352521437530000,27850592121190001279928,1609345458428168657866050
%N a(n) = (1/n) * Sum_{k = 0..n} (n+2*k) * binomial(n+k-1,k)^3.
%C Compare with the closed form evaluation of the binomial sums (1/n) * Sum_{k = 0..n} (-1)^(n+k) * (n + 2*k) * binomial(n+k-1,k) = binomial(2*n,n) and (1/n) * Sum_{k = 0..n} (n + 2*k) * binomial(n+k-1,k)^2 = binomial(2*n,n)^2.
%C The central binomial coefficients u(n) := binomial(2*n,n) = A000984(n) satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for positive integers n and r and all primes p >= 5. We conjecture that the present sequence satisfies the same congruences.
%C More generally, for m >= 3, the sequences {b_m(n) : n >= 1} and {c_m(n) : n >= 1} defined by b_m(n) = (1/n) * Sum_{k = 0..n} (n + 2*k) * binomial(n+k-1,k)^m and c_m(n) = (1/n) * Sum_{k = 0..n} (-1)^k * (n + 2*k) * binomial(n+k-1,k)^m may satisfy the same congruences.
%F a(n) ~ 3 * 2^(6*n) / (7 * Pi^(3/2) * n^(3/2)). - _Vaclav Kotesovec_, Mar 29 2023
%p seq( (1/n)*add((n + 2*k) * binomial(n+k-1,k)^3, k = 0..n), n = 1..20);
%t Table[Sum[(3*n - 2*k) * Binomial[2*n-k-1, n-1]^3, {k,0,n}]/n, {n,1,20}] (* _Vaclav Kotesovec_, Mar 29 2023 *)
%o (PARI) a(n) = (1/n) * sum(k = 0, n, (n+2*k) * binomial(n+k-1,k)^3); \\ _Michel Marcus_, Mar 30 2023
%Y Cf. A000984, A002894, A361884, A361885, A361886.
%K nonn,easy
%O 1,1
%A _Peter Bala_, Mar 28 2023