%I #60 Apr 02 2023 17:49:17
%S 2,3,13,5,6,7,17,9,19,29,39,67,59,69,79,89,99,199,389,489,499,599,699,
%T 997,1889,999,1999,2999,4989,4999,6899,6999,17989,8999,18999,29989,
%U 39989,48999,49999,59999,69999,79999,98999,198999,199999,389999,589989,598999,599999,798999,799999,989999
%N a(n) is the first member of A106843 with sum of digits n.
%C If n is not divisible by 3, a(n) is the least prime with sum of digits n.
%C If n > 3 is divisible by 3 but not by 9, a(n) = 3*p where p is prime.
%C If n is divisible by 9, a(n) is divisible by 9.
%C Conjecture: a(n) == 9 (mod 10) for all n > 25.
%C Conjecture: all terms are zeroless. - _Chai Wah Wu_, Mar 30 2023
%H Chai Wah Wu, <a href="/A361831/b361831.txt">Table of n, a(n) for n = 2..304</a>
%e a(4) = 13 because 13 is the first prime whose sum of digits is 4.
%e a(6) = 6 because 6 = 3*2 where 2 is prime and 6 has sum of digits 6.
%p f106843:= proc(t) local w; w:= padic:-ordp(t,3); isprime(t/3^w) or t/3^w = 1 end proc;
%p V:= Array(2..60): count:= 0:
%p for x from 2 while count < 59 do
%p if f106843(x) then
%p s:= convert(convert(x,base,10),`+`);
%p if s <= 60 and V[s] = 0 then V[s]:= x; count:= count+1; fi
%p fi
%p od:
%p convert(V,list);
%o (Python)
%o from itertools import count
%o from sympy import isprime
%o from sympy.utilities.iterables import multiset_permutations, partitions
%o from gmpy2 import digits
%o def A361831(n):
%o for m in count((n+8)//9):
%o c = (t:=10**m)
%o for a, b in partitions(n,m=m,k=9,size=True):
%o b[0] = (m-a)
%o for s in multiset_permutations(b):
%o if (lambda n:isprime(n) or n==1)(int('0'+digits(k:=int('0'+''.join(str(d) for d in s)),3).rstrip('0'),3)):
%o c = min(c,k)
%o if c < t:
%o return c # _Chai Wah Wu_, Mar 30-31 2023
%Y Cf. A007953, A106843.
%K nonn,base
%O 2,1
%A _Robert Israel_, Mar 26 2023