Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Jun 26 2024 04:32:50
%S 1,1,1,1,1,1,1,5,1,1,1,1,1,1,1,5,1,1,1,1,1,1,1,5,1,1,10,1,1,1,1,5,1,1,
%T 1,1,1,1,1,5,1,1,1,1,1,1,1,5,1,1,1,1,1,10,1,5,1,1,1,1,1,1,1,21,1,1,1,
%U 1,1,1,1,5,1,1,1,1,1,1,1,5
%N Sum of the squares d^2 of the divisors d satisfying d^3|n.
%C The Mobius transform is 1, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, ... = n^(2/3)*A010057(n).
%H Winston de Greef, <a href="/A361793/b361793.txt">Table of n, a(n) for n = 1..10000</a>
%H A. Dixit, B. Maji, and A. Vatwani, <a href="https://arxiv.org/abs/2303.09937">Voronoi summation formula for the generalized divisor function sigma_z^k(n)</a>, arXiv:2303.09937 [math.NT], 2023, sigma(z=2,k=3,n).
%F a(n) = Sum_{d^3|n} d^2.
%F Multiplicative with a(p^e) = (p^(2*(floor(e/3) + 1)) - 1)/(p^2 - 1). - _Amiram Eldar_, Mar 24 2023
%F G.f.: Sum_{k>=1} k^2 * x^(k^3) / (1 - x^(k^3)). - _Ilya Gutkovskiy_, Jun 05 2024
%F From _Vaclav Kotesovec_, Jun 26 2024: (Start)
%F Dirichlet g.f.: zeta(s)*zeta(3*s-2).
%F Sum_{k=1..n} a(k) ~ n*(log(n) + 4*gamma - 1)/3, where gamma is the Euler-Mascheroni constant A001620. (End)
%p gsigma := proc(n,z,k)
%p local a,d ;
%p a := 0 ;
%p for d in numtheory[divisors](n) do
%p if modp(n,d^k) = 0 then
%p a := a+d^z ;
%p end if ;
%p end do:
%p a ;
%p end proc:
%p seq( gsigma(n,2,3),n=1..80) ;
%t f[p_, e_] := (p^(2*(Floor[e/3] + 1)) - 1)/(p^2 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Mar 24 2023 *)
%o (PARI) a(n) = sumdiv(n, d, if (ispower(d, 3), sqrtnint(d, 3)^2)); \\ _Michel Marcus_, Mar 24 2023
%o (PARI) for(n=1, 100, print1(direuler(p=2, n, (1/((1-X)*(1-p^2*X^3))))[n], ", ")) \\ _Vaclav Kotesovec_, Jun 26 2024
%o (Python)
%o from math import prod
%o from sympy import factorint
%o def A361793(n): return prod((p**(e//3+1<<1)-1)//(p**2-1) for p, e in factorint(n).items()) # _Chai Wah Wu_, Mar 24 2023
%Y Cf. A035316, A069290, A333843.
%K nonn,mult,easy
%O 1,8
%A _R. J. Mathar_, Mar 24 2023