login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f. A(x) satisfying A(x)^5 = A( x^5/(1 - 5*x)^5 ).
3

%I #15 Apr 17 2023 22:15:08

%S 1,5,25,125,625,3126,15655,78650,397625,2031875,10553128,56047040,

%T 306020575,1723544750,10015548750,59871903136,366244516505,

%U 2278239803025,14324961668875,90586470006875,573925269278169,3633524853973370,22949197586894725,144473478898021750

%N Expansion of g.f. A(x) satisfying A(x)^5 = A( x^5/(1 - 5*x)^5 ).

%C Related Catalan identity: F(x)^2 = F( x^2/(1 - 2*x)^2 ), where F(x) = x*C(x)^2 and C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).

%C Radius of convergence of g.f. A(x) is r where r is the real root of r = (1 - 5*r)^(5/4) with A(r) = 1 and r = 0.1549930338264677513709380922535...

%H Paul D. Hanna, <a href="/A361765/b361765.txt">Table of n, a(n) for n = 1..500</a>

%F G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies:

%F (1) A(x)^5 = A( x^5/(1 - 5*x)^5 ).

%F (2) A(x^5) = A( x/(1 + 5*x) )^5.

%F (3) A(x) = x * Product_{n>=0} 1/(1 - 5/F(n,x))^(1/5^n), where F(0,x) = 1/x, F(m,x) = (F(m-1,x) - 5)^5 for m > 0.

%e G.f.: A(x) = x + 5*x^2 + 25*x^3 + 125*x^4 + 625*x^5 + 3126*x^6 + 15655*x^7 + 78650*x^8 + 397625*x^9 + 2031875*x^10 + 10553128*x^11 + ...

%e where

%e A( x^5/(1 - 5*x)^5 ) = x^5 + 25*x^6 + 375*x^7 + 4375*x^8 + 43750*x^9 + 393755*x^10 + 3281500*x^11 + 25788125*x^12 + 193496875*x^13 + ...

%e which equals A(x)^5.

%e RELATED SERIES.

%e Notice that the following fifth root is an integer series

%e ( A(x)/x )^(1/5) = 1 + x + 3*x^2 + 11*x^3 + 44*x^4 + 185*x^5 + 806*x^6 + 3627*x^7 + 16926*x^8 + 82615*x^9 + 425633*x^10 + ... + A361764(n)*x^n + ...

%e SPECIFIC VALUES.

%e A(1/7) = A(1/32)^(1/5) = 0.5172818651818402813815396980...

%e A(1/7) = (1/7) * (1 - 5/7)^(-1) * (1 - 5/32)^(-1/5) * (1 - 5/14348907)^(-1/25) * (1 - 5/14348902^5)^(-1/125) * ...

%e A(1/8) = A(1/243)^(1/5) = 0.334722270350398633572525135166...

%e A(1/8) = (1/8) * (1 - 5/8)^(-1) * (1 - 5/243)^(-1/5) * (1 - 5/763633171168)^(-1/25) * (1 - 5/763633171163^5)^(-1/125) * ...

%e A(1/10) = A(1/3125)^(1/5) = 0.2000640615121819990127352003599...

%e A(1/10) = (1/10) * (1 - 5/10)^(-1) * (1 - 5/3125)^(-1/5) * (1 - 5/295646655283200000)^(-1/25) * (1 - 5/295646655283199995^5)^(-1/125) * ...

%o (PARI) {a(n) = my(A=x); for(i=1, #binary(n+1), A = ( subst(A, x, x^5/(1 - 5*x +x*O(x^n))^5 ) )^(1/5) ); polcoeff(A, n)}

%o for(n=1, 30, print1(a(n), ", "))

%Y Cf. A361764, A352704, A361763.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Mar 24 2023