The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A361762 Expansion of g.f. A(x) satisfying A(x)^3 = A( x^3/(1 - 3*x)^3 ) / (1 - 3*x). 3
 1, 1, 2, 5, 15, 52, 197, 779, 3135, 12709, 51757, 211761, 871022, 3603282, 14992067, 62719588, 263724900, 1114107925, 4726879206, 20135644606, 86099626270, 369492052236, 1591170063412, 6875211016868, 29803706856996, 129607445296468, 565362988510604, 2473576310166981 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Related Catalan identity: C(x)^2 = C( x^2/(1 - 2*x)^2 ) / (1 - 2*x), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108). Radius of convergence of g.f. A(x) is r where r is the real root of r = (1 - 3*r)^(3/2) with A(r) = 1/r^(1/3) = 1.6716998816571609697481497812195572... so that A(r)^3 = A(r)/(1 - 3*r) and r = (52 - (324*sqrt(717) + 8108)^(1/3) + (324*sqrt(717) - 8108)^(1/3))/162 = 0.214054846272632706742187569443388024... LINKS Paul D. Hanna, Table of n, a(n) for n = 0..500 FORMULA G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies: (1) A(x)^3 = A( x^3/(1 - 3*x)^3 ) / (1 - 3*x). (2) A(x^3) = A( x/(1 + 3*x) )^3 / (1 + 3*x). (3) A(x) = Product_{n>=1} 1/(1 - 3/F(n,x))^(1/3^n), where F(1,x) = 1/x, F(m,x) = (F(m-1,x) - 3)^3 for m > 1. EXAMPLE G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 52*x^5 + 197*x^6 + 779*x^7 + 3135*x^8 + 12709*x^9 + 51757*x^10 + 211761*x^11 + 871022*x^12 + ... such that A(x)^3 = A( x^3/(1 - 3*x)^3 ) / (1 - 3*x). RELATED SERIES. A(x)^3 = 1 + 3*x + 9*x^2 + 28*x^3 + 93*x^4 + 333*x^5 + 1271*x^6 + 5064*x^7 + 20673*x^8 + 85460*x^9 + ... + A361763(n+1)*x^n + ... A( x^3/(1 - 3*x)^3 ) = 1 + x^3 + 9*x^4 + 54*x^5 + 272*x^6 + 1251*x^7 + 5481*x^8 + 23441*x^9 + 99279*x^10 + ... SPECIFIC VALUES. A(1/5) = ( 5/2 * A(1/8) )^(1/3) = 1.431256341682946446458148822310720... A(1/5) = (1 - 3/5)^(-1/3) * (1 - 3/8)^(-1/9) * (1 - 3/125)^(-1/27) * (1 - 3/1815848)^(-1/81) * ... A(1/6) = ( 2 * A(1/27) )^(1/3) = 1.2765282682430983587479124671832773... A(1/6) = (1 - 3/6)^(-1/3) * (1 - 3/27)^(-1/9) * (1 - 3/13824)^(-1/27) * (1 - 3/2640087986661)^(-1/81) * ... A(1/9) = ( 3/2 * A(1/216) )^(1/3) = 1.146494555403917024085906029391966218... A(1/12) = ( 4/3 * A(1/729) )^(1/3) = 1.101146836396635655557234214350215617... PROG (PARI) {a(n) = my(A=1); for(i=1, #binary(n+1), A = ( subst(A, x, x^3/(1 - 3*x +x*O(x^n))^3 )/(1 - 3*x +x*O(x^n)) )^(1/3) ); polcoeff(H=A, n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A361763, A361764, A000108. Sequence in context: A276721 A287583 A287276 * A367415 A369443 A369398 Adjacent sequences: A361759 A361760 A361761 * A361763 A361764 A361765 KEYWORD nonn AUTHOR Paul D. Hanna, Mar 23 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 21:09 EDT 2024. Contains 373487 sequences. (Running on oeis4.)