Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Mar 23 2023 05:31:57
%S 1,6,96,1860,39780,900396,21146496,509697936,12523921740,312324904320,
%T 7881117611796,200784546041976,5156135919980136,133299228503087640,
%U 3465901878247744920,90563401722349627920,2376642701449937741580,62607393746503658100360
%N Diagonal of rational function 1/(1 - (x + y + z + x^2*y*z)).
%F a(n) = Sum_{k=0..n} (3*k)!/k!^3 * binomial(k,n-k).
%F a(n) ~ sqrt(3) * ((27 + 3*sqrt(93))/2)^n / (2*Pi*n). - _Vaclav Kotesovec_, Mar 23 2023
%t Table[Sum[(3*k)!/k!^3 * Binomial[k,n-k], {k,0,n}], {n,0,20}] (* _Vaclav Kotesovec_, Mar 23 2023 *)
%o (PARI) a(n) = sum(k=0, n, (3*k)!/k!^3*binomial(k, n-k));
%Y Cf. A361738, A361739.
%Y Cf. A361728.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Mar 22 2023