login
A(n,k) is the n-th prime p such that p + 2^k is also prime; square array A(n,k), n>=1, k>=1, read by antidiagonals.
3

%I #15 Mar 20 2023 13:35:19

%S 3,3,5,3,7,11,3,5,13,17,5,7,11,19,29,3,11,13,23,37,41,3,7,29,31,29,43,

%T 59,7,11,19,41,37,53,67,71,11,13,23,37,47,43,59,79,101,7,29,37,29,43,

%U 71,67,71,97,107,5,37,59,61,53,67,107,73,89,103,137

%N A(n,k) is the n-th prime p such that p + 2^k is also prime; square array A(n,k), n>=1, k>=1, read by antidiagonals.

%H Alois P. Heinz, <a href="/A361679/b361679.txt">Antidiagonals n = 1..200, flattened</a>

%e Square array A(n,k) begins:

%e 3, 3, 3, 3, 5, 3, 3, 7, 11, 7, ...

%e 5, 7, 5, 7, 11, 7, 11, 13, 29, 37, ...

%e 11, 13, 11, 13, 29, 19, 23, 37, 59, 67, ...

%e 17, 19, 23, 31, 41, 37, 29, 61, 89, 73, ...

%e 29, 37, 29, 37, 47, 43, 53, 97, 101, 79, ...

%e 41, 43, 53, 43, 71, 67, 71, 103, 107, 127, ...

%e 59, 67, 59, 67, 107, 73, 83, 127, 131, 139, ...

%e 71, 79, 71, 73, 131, 103, 101, 163, 149, 157, ...

%e 101, 97, 89, 97, 149, 109, 113, 193, 179, 163, ...

%e 107, 103, 101, 151, 167, 127, 149, 211, 197, 193, ...

%p A:= proc() option remember; local f; f:= proc() [] end;

%p proc(n, k) option remember; local p;

%p p:= `if`(nops(f(k))=0, 1, f(k)[-1]);

%p while nops(f(k))<n do p:= nextprime(p);

%p if isprime(p+2^k) then f(k):= [f(k)[], p] fi

%p od; f(k)[n]

%p end

%p end():

%p seq(seq(A(n, 1+d-n), n=1..d), d=1..12);

%Y Columns k=1-10 give: A001359, A023200, A023202, A049488, A049489, A049490, A049491, A361483, A361484, A361485.

%Y Row n=1 gives A056206.

%Y Main diagonal gives A361680.

%Y Cf. A000040.

%K nonn,look,tabl

%O 1,1

%A _Alois P. Heinz_, Mar 20 2023