login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of distinct prime factors in decimal concatenation of integer (n, n-1, ..., 2, 1, 2, ..., n-1, n) = A007942(n).
2

%I #30 Oct 16 2023 22:28:30

%S 0,2,3,2,5,3,3,4,3,3,3,3,1,4,6,2,2,3,4,7,4,8,2,3,4,6,5,7,5,6,6,3,5,7,

%T 4,5,8,5,6,6,3,3,7,7,7,7,10,7,6,6,7,4,5,5,7

%N Number of distinct prime factors in decimal concatenation of integer (n, n-1, ..., 2, 1, 2, ..., n-1, n) = A007942(n).

%C a(n) < A360736(n) when n > 10 is a multiple of 4 or of 25, since, for these indices, A007942(n) is divisible by 2^2 or 5^2; but this inequality holds also, for other indices: for n = 6 (see example) and n = 39 where A007942(39) = 29 * 617^2 * 10185403128074353 * ...

%H M. Fleuren, <a href="http://www.gallup.unm.edu/~smarandache/SmMirror.txt">Factoring of the Smarandache Mirror Sequence</a>.

%H F. Smarandache, <a href="http://www.gallup.unm.edu/~smarandache/OPNS.pdf">Only Problems, Not Solutions!</a>, Mirror sequence, problem 19, page 20.

%F a(n) = A001221(A007942(n)).

%e a(4) = 2 since 4321234 = 2 * 2160617;

%e a(6) = 3 since 65432123456 = 2^6 * 7 * 146053847.

%o (Python)

%o from sympy import primefactors

%o def A361624(n): return len(primefactors(int(''.join(map(str,range(n,1,-1)))+''.join(map(str,range(1,n+1)))))) # _Chai Wah Wu_, Mar 21 2023

%Y Cf. A001221, A007942, A110760, A360736.

%K nonn,base,more

%O 1,2

%A _Bernard Schott_, Mar 18 2023

%E a(36)-a(54) from _Amiram Eldar_, Mar 19 2023

%E a(42) corrected by _Sean A. Irvine_, Sep 26 2023

%E a(55) from _Sean A. Irvine_, Oct 16 2023