login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n! * Sum_{k=0..n} binomial(n+(n-1)*(k+1),n-k)/k!.
2

%I #15 Mar 18 2023 18:37:50

%S 1,2,15,214,4721,146046,5958367,307382090,19459587009,1478414285146,

%T 132440451881231,13787717744245182,1647673524863409265,

%U 223671725058601427414,34184743554559413628191,5837132027535188545269106,1106136052471647285563082497

%N a(n) = n! * Sum_{k=0..n} binomial(n+(n-1)*(k+1),n-k)/k!.

%H Winston de Greef, <a href="/A361617/b361617.txt">Table of n, a(n) for n = 0..272</a>

%F a(n) = n! * [x^n] exp( x/(1-x)^n ) / (1-x)^n.

%F a(n) = Sum_{k=0..n} (n+(n-1)*(k+1))!/(n*k+n-1)! * binomial(n,k) for n > 0.

%o (PARI) a(n) = n!*sum(k=0, n, binomial(n+(n-1)*(k+1), n-k)/k!);

%Y Main diagonal of A361616.

%Y Cf. A361607.

%K nonn

%O 0,2

%A _Seiichi Manyama_, Mar 18 2023