login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f. A(x) satisfying 3*x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)).
5

%I #14 Jan 18 2024 14:01:18

%S 1,3,24,171,1335,11940,115773,1160901,11901537,124726644,1332688035,

%T 14455451526,158660036535,1758835084221,19667067522966,

%U 221573079684087,2512635069594897,28656903391830291,328500210705228867,3782806859877522522,43738575934977450465

%N Expansion of g.f. A(x) satisfying 3*x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)).

%H Paul D. Hanna, <a href="/A361553/b361553.txt">Table of n, a(n) for n = 0..300</a>

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/QuintupleProductIdentity.html">Quintuple Product Identity</a>.

%F G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following.

%F (1) 3*x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)).

%F (2) 3*x = Sum_{n=-oo..+oo} x^(n*(3*n-1)/2) * A(x)^(3*n) * (x^n - 1/A(x)).

%F (3) 3*x = Product_{n>=1} (1 - x^n) * (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)) * (1 - x^(2*n-1)*A(x)^2) * (1 - x^(2*n-1)/A(x)^2), by the Watson quintuple product identity.

%F (4) a(n) = Sum_{k=0..n} A361550(n,k) * 3^k for n >= 0.

%F a(n) ~ c * d^n / n^(3/2), where d = 12.47776743014414138089586... and c = 0.474320402676760199022... - _Vaclav Kotesovec_, Mar 29 2023

%e G.f.: A(x) = 1 + 3*x + 24*x^2 + 171*x^3 + 1335*x^4 + 11940*x^5 + 115773*x^6 + 1160901*x^7 + 11901537*x^8 + 124726644*x^9 + ...

%e where A = A(x) satisfies the doubly infinite sum

%e 3*x = ... + x^12*(1/A^9 - A^8) + x^5*(1/A^6 - A^5) + x*(1/A^3 - A^2) + (1 - 1/A) + x^2*(A^3 - 1/A^4) + x^7*(A^6 - 1/A^7) + x^15*(A^9 - 1/A^10) + ... + x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)) + ...

%e also, by the Watson quintuple product identity,

%e 3*x = (1-x)*(1-x*A)*(1-1/A)*(1-x*A^2)*(1-x/A^2) * (1-x^2)*(1-x^2*A)*(1-x/A)*(1-x^3*A^2)*(1-x^3/A^2) * (1-x^3)*(1-x^3*A)*(1-x^2/A)*(1-x^5*A^2)*(1-x^5/A^2) * (1-x^4)*(1-x^4*A)*(1-x^3/A)*(1-x^7*A^2)*(1-x^7/A^2) * ...

%t (* Calculation of constant d: *) With[{k = 3}, 1/r /. FindRoot[{r^3*s^3 * QPochhammer[r] * QPochhammer[1/(r*s^2), r^2] * QPochhammer[1/(r*s), r] * QPochhammer[s, r] * QPochhammer[s^2/r, r^2] / ((-1 + s)*(-1 + r*s)*(-r + s^2)*(-1 + r*s^2)) == k*r, 1/(-1 + s) + 1/(s*(-1 + r*s)) + (2*s)/(-r + s^2) - 2/(s - r*s^3) + (-QPolyGamma[0, -Log[r*s]/Log[r], r] + QPolyGamma[0, Log[s]/Log[r], r] - QPolyGamma[0, -Log[r*s^2]/Log[r^2], r^2] + QPolyGamma[0, Log[s^2/r]/Log[r^2], r^2]) / (s*Log[r]) == 0}, {r, 1/12}, {s, 2}, WorkingPrecision -> 70]] (* _Vaclav Kotesovec_, Jan 18 2024 *)

%o (PARI) /* Using the doubly infinite series */

%o {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);

%o A[#A] = polcoeff(3*x - sum(m=-#A, #A, x^(m*(3*m-1)/2) * Ser(A)^(3*m-1) * (x^m*Ser(A) - 1) ) , #A-1) ); A[n+1]}

%o for(n=0, 30, print1(a(n), ", "))

%o (PARI) /* Using the quintuple product */

%o {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);

%o A[#A] = polcoeff(3*x - prod(m=1, #A, (1 - x^m) * (1 - x^m*Ser(A)) * (1 - x^(m-1)/Ser(A)) * (1 - x^(2*m-1)*Ser(A)^2) * (1 - x^(2*m-1)/Ser(A)^2) ), #A-1) ); A[n+1]}

%o for(n=0, 30, print1(a(n), ", "))

%Y Cf. A361550, A359920, A361552, A361554, A361555.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Mar 19 2023