login
A361442
Infinite triangle T(n, k), n, k >= 0, read and filled by rows the greedy way with distinct integers such that for any n, k >= 0, T(n, k) + T(n+1, k) + T(n+1, k+1) = 0; each term is minimal in absolute value and in case of a tie, preference is given to the positive value.
2
0, 1, -1, 2, -3, 4, 3, -5, 8, -12, 5, -8, 13, -21, 33, 6, -11, 19, -32, 53, -86, -2, -4, 15, -34, 66, -119, 205, 9, -7, 11, -26, 60, -126, 245, -450, 10, -19, 26, -37, 63, -123, 249, -494, 944, 7, -17, 36, -62, 99, -162, 285, -534, 1028, -1972
OFFSET
0,4
COMMENTS
Will every integer appear in the triangle?
LINKS
Rémy Sigrist, Colored representation of the first 500 rows (the color is function of the sign of T(n, k))
Rémy Sigrist, PARI program
FORMULA
T(n, 0) = A361443(n).
T(n, k) = (-1)^k * Sum_{i = 0..k} binomial(k, i) * T(n-i, 0).
EXAMPLE
Triangle begins:
0
1 -1
2 -3 4
3 -5 8 -12
5 -8 13 -21 33
6 -11 19 -32 53 -86
-2 -4 15 -34 66 -119 205
9 -7 11 -26 60 -126 245 -450
10 -19 26 -37 63 -123 249 -494 944
7 -17 36 -62 99 -162 285 -534 1028 -1972
PROG
(PARI) See Links section.
CROSSREFS
Sequence in context: A078908 A159797 A152920 * A288778 A290139 A317588
KEYWORD
sign,tabl
AUTHOR
Rémy Sigrist, Mar 12 2023
STATUS
approved