login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Infinitary aliquot sequence starting at 840: a(1) = 840, a(n) = A126168(a(n-1)), for n >= 2.
3

%I #9 Mar 12 2023 04:20:40

%S 840,2040,4440,9240,25320,51000,117480,271320,765480,1531320,3721800,

%T 5956440,12295560,25086840,54141960,108284280,250301640,502213560,

%U 1007626440,2017856760,4039750920,8079502200,19596145800,44369345400,71495068200,115576350360,231152701080

%N Infinitary aliquot sequence starting at 840: a(1) = 840, a(n) = A126168(a(n-1)), for n >= 2.

%C First differs from A045477 at n = 12.

%C 840 is the least number whose infinitary aliquot sequence is not known to be finite or eventually periodic.

%C _R. J. Mathar_ found that this sequence does not reach 0 or enter a cycle before the 1500th term (see A127661). This limit was extended to beyond the 3000th term (see the b-file).

%H Amiram Eldar, <a href="/A361421/b361421.txt">Table of n, a(n) for n = 1..3132</a>

%e a(1) = 840 by definition.

%e a(2) = A126168(a(1)) = A126168(840) = 2040.

%e a(3) = A126168(a(2)) = A126168(2040) = 4440.

%t f[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]];

%t infs[n_] := If[n==1, 1, Times @@ f @@@ FactorInteger[n]] - n; infs[0] = 0;

%t seq[len_, init_] := NestWhileList[infs, init, UnsameQ, All, len];

%t seq[27, 840]

%o (PARI) s(n) = {my(f = factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], f[i, 1]^(2^(#b-k)) + 1, 1))) - n; }

%o lista(nmax) = {my(k = 840); for(n = 1, nmax, print1(k, ", "); if(k == 0, break); k = s(k)); }

%Y Cf. A008892, A045477, A126168, A127661, A293355.

%K nonn

%O 1,1

%A _Amiram Eldar_, Mar 11 2023