login
Number A(n,k) of k-dimensional cubic lattice walks with 2n steps from origin to origin and avoiding early returns to the origin; square array A(n,k), n>=0, k>=0, read by antidiagonals.
7

%I #46 Mar 21 2023 13:26:19

%S 1,1,0,1,2,0,1,4,2,0,1,6,20,4,0,1,8,54,176,10,0,1,10,104,996,1876,28,

%T 0,1,12,170,2944,22734,22064,84,0,1,14,252,6500,108136,577692,275568,

%U 264,0,1,16,350,12144,332050,4525888,15680628,3584064,858,0

%N Number A(n,k) of k-dimensional cubic lattice walks with 2n steps from origin to origin and avoiding early returns to the origin; square array A(n,k), n>=0, k>=0, read by antidiagonals.

%C Column k is INVERTi transform of k-th row of A287318.

%H Alois P. Heinz, <a href="/A361397/b361397.txt">Antidiagonals n = 0..140, flattened</a>

%F A(n,1)/2 = A000108(n-1) for n >= 1.

%F G.f. of column k: 2 - 1/Integral_{t=0..oo} exp(-t)*BesselI(0,2*t*sqrt(x))^k dt. - _Shel Kaphan_, Mar 19 2023

%e Square array A(n,k) begins:

%e 1, 1, 1, 1, 1, 1, 1, ...

%e 0, 2, 4, 6, 8, 10, 12, ...

%e 0, 2, 20, 54, 104, 170, 252, ...

%e 0, 4, 176, 996, 2944, 6500, 12144, ...

%e 0, 10, 1876, 22734, 108136, 332050, 796860, ...

%e 0, 28, 22064, 577692, 4525888, 19784060, 62039088, ...

%p b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,

%p add(b(n-j, i-1)*binomial(n, j)^2, j=0..n))

%p end:

%p g:= proc(n, k) option remember; `if` (n<1, -1,

%p -add(g(n-i, k)*(2*i)!*b(i, k)/i!^2, i=1..n))

%p end:

%p A:= (n,k)-> `if`(n=0, 1, `if`(k=0, 0, g(n, k))):

%p seq(seq(A(n, d-n), n=0..d), d=0..10);

%t b[n_, 0] = 0; b[n_, 1] = 1; b[0, k_] = 1;

%t b[n_, k_] := b[n, k] = Sum[Binomial[n, i]^2*b[i, k - 1], {i, 0, n}]; (* A287316 *)

%t g[n_, k_] := g[n, k] = b[n, k]*Binomial[2 n, n]; (* A287318 *)

%t a[n_, k_] := a[n, k] = g[n, k] - Sum[a[i, k]*g[n - i, k], {i, 1, n - 1}];

%t TableForm[Table[a[n, k], {k, 0, 10}, {n, 0, 10}]] (* _Shel Kaphan_, Mar 14 2023 *)

%Y Columns k=0-5 give: A000007, |A002420|, A054474, A049037, A359801, A361364.

%Y Rows n=0-2 give: A000012, A005843, A139271.

%Y Main diagonal gives A361297.

%Y Cf. A000108, A287318.

%K nonn,tabl

%O 0,5

%A _Alois P. Heinz_, Mar 10 2023