Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jun 11 2023 12:28:54
%S 0,1,2,3,4,5,6,8,7,9,10,16,11,17,12,13,18,19,32,14,33,20,15,21,34,35,
%T 22,24,64,23,36,25,65,37,26,66,38,27,67,40,128,39,41,28,68,129,29,69,
%U 42,130,48,43,30,70,72,131,49,31,71,44,73,256,132,45,50,257,133,74,51,46,80,75,258,134,136
%N Rewrite A129912(n), a product of distinct primorials P(i) = A002110(i) instead as a sum of powers 2^(i-1).
%C Permutation of nonnegative numbers.
%H Michael De Vlieger, <a href="/A361376/b361376.txt">Table of n, a(n) for n = 1..15303</a> (a(15303) = 2^29.)
%H Michael De Vlieger, <a href="/A361376/a361376.png">Log log scatterplot of a(n)</a>, n = 1..10^6.
%H Michael De Vlieger, <a href="/A361376/a361376_1.png">Plot terms S(n) = A272011(a(n)) at (x,y) = (n,S(n,k))</a> for n = 1..2^11.
%F Let S(n) be the set of indices of primorials P(i), reverse sorted, such that A129912(n) = Product_{k=1..m} S(n,k), where m = | S(n) |. Then a(n) = Sum_{k=1..m} 2^(S(n,k)-1).
%e a(1) = 0 by convention.
%e a(8) = 8 comes before a(9) = 7, since we interpret 8 = 2^3 instead as P(4) = 210, while for a(9), 7 = 2^2 + 2^1 + 2^0 becomes P(3)*P(2)*P(1) = 30*6*2 = 360. Because 210 < 360, 8 appears before 7 in this sequence.
%e Table relating a(n), n=1..19 with the set S(n) of indices of distinct primorial factors of A129912(n):
%e n A129912(n) S(n) a(n) A272011(a(n))
%e -----------------------------------------
%e 1 1 0
%e 2 2 1 1 0
%e 3 6 2 2 1
%e 4 12 2,1 3 1,0
%e 5 30 3 4 2
%e 6 60 3,1 5 2,0
%e 7 180 3,2 6 2,1
%e 8 210 4 8 3
%e 9 360 3,2,1 7 2,1,0
%e 10 420 4,1 9 3,0
%e 11 1260 4,2 10 3,1
%e 12 2310 5 16 4
%e 13 2520 4,2,1 11 3,1,0
%e 14 4620 5,1 17 4,0
%e 15 6300 4,3 12 3,2
%e 16 12600 4,3,1 13 3,2,0
%e 17 13860 5,2 18 4,1
%e 18 27720 5,2,1 19 4,1,0
%e 19 30030 6 32 5
%e ...
%t a6939[n_] := Product[Prime[n + 1 - i]^i, {i, n}];
%t g[m_] := Block[{f, j = 1},
%t f[n_, i_, e_] :=
%t If[n < m, Block[{p = Prime[i + 1]}, If[e == 1, Sow@ n];
%t f[n p^e, i + 1, e];
%t If[e > 1, f[n p^(e - 1), i + 1, e - 1]]]];
%t Sort@ Reap[While[a6939[j] < m, f[2^j, 1, j]; j++]][[-1, 1]] ];
%t Map[Total@
%t Map[2^(# - 1) &,
%t Table[LengthWhile[#1, # >= j &], {j, #2}] & @@ {#, Max[#]} ] &[
%t FactorInteger[#][[All, -1]]] &, g[2^31]] (* _Michael De Vlieger_, Jun 08 2023, after _Giovanni Resta_ at A129929 *)
%Y Cf. A002110, A129912, A272011, A283477.
%K nonn
%O 1,3
%A _Michael De Vlieger_, Jun 08 2023