Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Mar 10 2023 10:09:19
%S 7,129,7447,1399245,853468061,1774125803324,12983268697759210,
%T 340896057593147232397,32512334188761655225275067,
%U 11365639780174824680535568799361,14668665138188644335253106665956458513,70315069858161131939222463684374769308619684
%N Number of weakly 2-connected simple digraphs with n unlabeled nodes.
%D M. Kirchweger, M. Scheucher, and S. Szeider, SAT-Based Generation of Planar Graphs, in preparation.
%o (PARI) \\ See links in A339645 for combinatorial species functions.
%o edges(v) = {2*sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]-1)}
%o graphsCycleIndex(n)={my(s=0); forpart(p=n, s+=permcount(p) * 2^edges(p) * sMonomial(p)); s/n!}
%o graphsSeries(n)={sum(k=0, n, graphsCycleIndex(k)*x^k) + O(x*x^n)}
%o cycleIndexSeries(n)={my(g=graphsSeries(n), gc=sLog(g), gcr=sPoint(gc)); intformal(x*sSolve( sLog( gcr/(x*sv(1)) ), gcr ), sv(1)) + sSolve(subst(gc, sv(1), 0), gcr)}
%o { my(N=15); Vec(-2*x^2 + OgfSeries(cycleIndexSeries(N))) } \\ _Andrew Howroyd_, Mar 09 2023
%Y Directed variant of A002218.
%Y Cf. A000273, A003085.
%K nonn
%O 3,1
%A _Manfred Scheucher_, Mar 09 2023
%E Terms a(7) and beyond from _Andrew Howroyd_, Mar 09 2023