login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of rank n+1 simple connected series-parallel matroids on [2n].
1

%I #18 Mar 09 2023 20:03:59

%S 0,1,75,9345,1865745,554479695,231052877055,128938132548225,

%T 92986310399407425,84250567868935042575,93744545254140599193375,

%U 125717783386887888296925825,200041202339679732328342670625,372688996228146502285257581079375,803768398459351988653830600415029375

%N Number of rank n+1 simple connected series-parallel matroids on [2n].

%H Luis Ferroni and Matt Larson, <a href="https://arxiv.org/abs/2303.02253">Kazhdan-Lusztig polynomials of braid matroids</a>, arXiv:2303.02253 [math.CO], 2023.

%e For n=2 the a(2) = 1 rank 3 simple connected series-parallel matroid on [4] is the uniform matroid of rank 3.

%o (PARI) a(n) = T(2*n)[2*n][n+1] \\ T(n) defined in A361355. - _Andrew Howroyd_, Mar 09 2023

%Y Cf. A034941, A361355.

%K nonn

%O 1,3

%A _Matt Larson_, Mar 06 2023

%E Terms a(10)-a(15) from _Andrew Howroyd_, Mar 09 2023