login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361239
Array read by antidiagonals: T(n,k) is the number of noncrossing k-gonal cacti with n polygons up to rotation and reflection.
6
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 4, 7, 1, 1, 1, 1, 6, 19, 28, 1, 1, 1, 1, 7, 35, 124, 108, 1, 1, 1, 1, 9, 57, 349, 931, 507, 1, 1, 1, 1, 10, 85, 737, 3766, 7801, 2431, 1, 1, 1, 1, 12, 117, 1359, 10601, 45632, 68685, 12441, 1
OFFSET
0,14
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals).
Wikipedia, Cactus graph.
FORMULA
T(0,k) = T(1,k) = T(2,k) = 1.
T(2*n,k) = (A361236(2*n,k) + binomial((2*k-1)*n + 1, n)/((2*k-1)*n + 1))/2.
T(2*n+1,k) = (A361236(2*n+1,k) + k*binomial((2*k-1)*n + k, n)/((2*k-1)*n + k))/2.
EXAMPLE
Array begins:
===================================================
n\k | 1 2 3 4 5 6 ...
----+----------------------------------------------
0 | 1 1 1 1 1 1 ...
1 | 1 1 1 1 1 1 ...
2 | 1 1 1 1 1 1 ...
3 | 1 3 4 6 7 9 ...
4 | 1 7 19 35 57 85 ...
5 | 1 28 124 349 737 1359 ...
6 | 1 108 931 3766 10601 24112 ...
7 | 1 507 7801 45632 167741 471253 ...
8 | 1 2431 68685 580203 2790873 9678999 ...
9 | 1 12441 630850 7687128 48300850 206780448 ...
...
PROG
(PARI) \\ R(n, k) gives A361236.
u(n, k, r) = {r*binomial(n*(2*k-1) + r, n)/(n*(2*k-1) + r)}
R(n, k) = {if(n==0, 1, u(n, k, 1)/((k-1)*n+1) + sumdiv(gcd(k, n-1), d, if(d>1, eulerphi(d)*u((n-1)/d, k, 2*k/d)/k)))}
T(n, k) = {(R(n, k) + u(n\2, k, if(n%2, k, 1)))/2}
CROSSREFS
Columns 1..4 are A000012, A296533, A361240, A361241.
Row n=3 is A032766.
Sequence in context: A046534 A224489 A318933 * A140334 A131324 A371884
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Mar 06 2023
STATUS
approved