login
A361223
Maximum number of inequivalent permutations of a partition of n, where two permutations are equivalent if they are reversals of each other.
2
1, 1, 1, 2, 2, 4, 6, 10, 16, 30, 54, 84, 140, 252, 420, 756, 1260, 2520, 4620, 7920, 13860, 27720, 51480, 90120, 180180, 337890, 600600, 1081080, 2042040, 3675672, 6348888, 12252240, 23279256, 42325920, 77597520, 148140720, 271591320, 480507720, 892371480
OFFSET
1,4
LINKS
Pontus von Brömssen, Table of n, a(n) for n = 1..100
EXAMPLE
For n = 5, the 7 partitions have the following permutations (~ means equivalence under reversal):
permutations | number of inequivalent permutations
---------------------+------------------------------------
5 | 1
41~14 | 1
32~23 | 1
311~113, 131 | 2
221~122, 212 | 2
2111~1112, 1211~1121 | 2
11111 | 1
The maximum number of inequivalent permutations is 2 (for the partitions 311, 221, and 2111), so a(5) = 2.
CROSSREFS
First column of A361221.
Cf. A102462.
Sequence in context: A300865 A053637 A000016 * A060553 A293673 A344707
KEYWORD
nonn
AUTHOR
STATUS
approved