Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #50 Apr 01 2023 23:57:01
%S 1,1,2,1,2,4,2,3,5,8,1,4,7,6,16,1,2,6,13,8,32,2,3,3,14,15,12,64,1,8,5,
%T 6,20,25,18,128,3,2,10,7,7,26,39,30,256,6,15,4,20,19,11,50,55,36,512,
%U 1,10,27,9,28,21,14,52,75,41,1024,1,4,46,51,10,82,43,17,92,85,66,2048
%N Array, read by ascending antidiagonals, whose n-th row consists of the powers of 2, if n = 1; of the primes of the form (2*n-1)*2^k+1, if they exist and n > 1; and of zeros otherwise.
%C Is a(n) <= A279709(n)?
%H Ray Ballinger and Wilfrid Keller, <a href="http://www.prothsearch.com/riesel1.html">List of primes k.2^n + 1 for k < 300</a>.
%e Table starts
%e 1 2 4 8 16 32 64 128 ... A000079
%e 1 2 5 6 8 12 18 30 ... A002253
%e 1 3 7 13 15 25 39 55 ... A002254
%e 2 4 6 14 20 26 50 52 ... A032353
%e 1 2 3 6 7 11 14 17 ... A002256
%e 1 3 5 7 19 21 43 81 ... A002261
%e 2 8 10 20 28 82 188 308 ... A032356
%e 1 2 4 9 10 12 27 37 ... A002258
%e ...
%e (2*39279 - 1)*2^r + 1 is composite for every r > 0 (see comments from A046067), so the 39279th row is A000004, the zero sequence.
%o (PARI) vk(k, nn) = if (k==1, return (vector(nn, i, 2^(i-1)))); my(v = vector(nn-k+1), nb=0, i=0, x); while (nb != nn-k+1, if (isprime((2*k-1)*2^i+1), nb++; v[nb] = i); i++;); v;
%o lista(nn) = my(v=vector(nn, k, vk(k, nn))); my(w=List()); for (i=1, nn, for (j=1, i, listput(w, v[i-j+1][j]););); Vec(w); \\ _Michel Marcus_, Mar 03 2023
%Y Cf. A000079, A002253, A002254, A032353, A002256, A002261, A032356, A002258.
%Y Cf. A033809 (1st column).
%Y Cf. A000004, A046067, A279709.
%K nonn,tabl
%O 1,3
%A _Lorenzo Sauras Altuzarra_, Mar 01 2023