Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 May 04 2023 20:37:39
%S 1,1,3,18,160,1830,25074,395248,6990876,136464705,2906040280,
%T 66938704602,1656963703434,43848218457953,1235194571623950,
%U 36905133359883240,1165832901366137184,38830278855693956931,1360186936717777641747,49995325008141402758320
%N Expansion of g.f. A(x) satisfying a(n) = [x^(n-1)] A(x)^(n+1) for n >= 1.
%C A variant of A113882 (number of well-nested drawings of a rooted tree).
%H Paul D. Hanna, <a href="/A361048/b361048.txt">Table of n, a(n) for n = 0..300</a>
%F Given g.f. A(x) = Sum_{n>=0} a(n)*x^n, let B(x) be the g.f. of A361049, then the following formulas hold.
%F (1) a(n) = [x^(n-1)] A(x)^(n+1) for n >= 1.
%F (2) a(n) = (n+1)/2 * [x^(n-1)] B(x)^2 for n >= 1.
%F (3) A(x) = 1 + x*B(x)^2 + x^2*B(x)*B'(x).
%F (4) A(x) = B(x/A(x)).
%F (5) A(x) = x / Series_Reversion(x*B(x)).
%F (6) B(x) = A(x*B(x)).
%F a(n) ~ c * n! * n^(3*LambertW(1) - 2 + 3/(1 + LambertW(1))) / LambertW(1)^n, where c = 0.078464448259604971209... - _Vaclav Kotesovec_, Mar 13 2023
%e G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 160*x^4 + 1830*x^5 + 25074*x^6 + 395248*x^7 + 6990876*x^8 + 136464705*x^9 + ...
%e The table of coefficients in the successive powers of g.f. A(x) begins:
%e n = 1: [1, 1, 3, 18, 160, 1830, 25074, 395248, ...];
%e n = 2: [1, 2, 7, 42, 365, 4088, 55092, 857384, ...];
%e n = 3: [1, 3, 12, 73, 624, 6855, 90885, 1396236, ...];
%e n = 4: [1, 4, 18, 112, 947, 10224, 133410, 2023028, ...];
%e n = 5: [1, 5, 25, 160, 1345, 14301, 183765, 2750560, ...];
%e n = 6: [1, 6, 33, 218, 1830, 19206, 243205, 3593406, ...];
%e n = 7: [1, 7, 42, 287, 2415, 25074, 313159, 4568131, ...];
%e n = 8: [1, 8, 52, 368, 3114, 32056, 395248, 5693528, ...];
%e n = 9: [1, 9, 63, 462, 3942, 40320, 491304, 6990876, ...];
%e ...
%e in which the secondary diagonal equals this sequence (shift left one position).
%e RELATION TO A361049.
%e The main diagonal in the above table,
%e [1, 2, 12, 112, 1345, 19206, 313159, 5693528, ...],
%e can be used to obtain the coefficients of the g.f. B(x) of A361049 like so:
%e [1, 2/2, 12/3, 112/4, 1345/5, 19206/6, 313159/7, 5693528/8, ...]
%e = [1, 1, 4, 28, 269, 3201, 44737, 711691, ..., A361049(n), ...].
%e Further, the coefficients in B(x)^2, which begins
%e [1, 2, 9, 64, 610, 7164, 98812, 1553528, 27292941, ...],
%e can in turn be used to generate the terms of this sequence:
%e [1*2/2, 2*3/2, 9*4/2, 64*5/2, 610*6/2, 7164*7/2, 98812*8/2, ...]
%e = [1, 3, 18, 160, 1830, 25074, 395248, ...].
%o (PARI) {a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
%o A[#A] = -polcoeff( Ser(A) - x*Ser(A)^(#A), #A-1)); A[n+1]}
%o for(n=0,30,print1(a(n),", "))
%Y Cf. A361049, A113882, A132070.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Mar 13 2023