login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Multiplicative with a(p^e) = e + 3.
5

%I #14 Sep 01 2023 04:09:05

%S 1,4,4,5,4,16,4,6,5,16,4,20,4,16,16,7,4,20,4,20,16,16,4,24,5,16,6,20,

%T 4,64,4,8,16,16,16,25,4,16,16,24,4,64,4,20,20,16,4,28,5,20,16,20,4,24,

%U 16,24,16,16,4,80,4,16,20,9,16,64,4,20,16,64,4,30,4,16

%N Multiplicative with a(p^e) = e + 3.

%H Amiram Eldar, <a href="/A360997/b360997.txt">Table of n, a(n) for n = 1..10000</a>

%F Dirichlet g.f.: Product_{primes p} (1 + (4*p^s - 3)/(p^s - 1)^2).

%F Dirichlet g.f.: zeta(s)^4 * Product_{primes p} (1 - 5/p^(2*s) + 6/p^(3*s) - 2/p^(4*s)).

%F From _Amiram Eldar_, Sep 01 2023: (Start)

%F a(n) = A000005(A361264(n)).

%F a(n) = A074816(n)*A007426(n)/A007425(n). (End)

%t g[p_, e_] := e+3; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]

%o (PARI) for(n=1, 100, print1(direuler(p=2, n, (1+2*X-2*X^2)/(1-X)^2)[n], ", "))

%Y Cf. A005361 (multiplicative with a(p^e) = e), A000005 (e+1), A343443 (e+2), this sequence (e+3), A322327 (2*e), A048691 (2*e+1), A360908 (2*e-1), A226602 (3*e), A048785 (3*e+1), A360910 (3*e-1), A360909 (3*e+2), A360911 (3*e-2), A322328 (4*e), A360996 (5*e).

%Y Cf. A000005, A007425, A007426, A074816.

%K nonn,easy,mult

%O 1,2

%A _Vaclav Kotesovec_, Feb 28 2023