login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360986
Primes whose sum of decimal digits has the same set of decimal digits as the prime.
1
2, 3, 5, 7, 199, 919, 991, 2999, 9929, 11177, 11717, 17117, 31333, 33331, 71171, 71711, 161611, 616111, 999499, 1111333, 1131133, 1131331, 1133131, 1313311, 3111313, 3111331, 3131113, 3131311, 3133111, 3311131, 3337777, 3377377, 3773377, 3773773, 7377373, 7733377, 7737337, 7737733, 32333333
OFFSET
1,1
LINKS
EXAMPLE
a(5) = 199 is a term because 199 is prime and 1+9+9 = 19 has the same set {1,9} of decimal digits as 199.
MAPLE
dmax:= 7: # for terms with up to dmax digits
dsets:= proc(s, S) option remember;
# nondecreasing lists [x_1, ..., x_n] with sum s and set of elements S
local i, x1;
if S = {} then if s = 0 then return {[]} else return {} fi fi;
x1:= min(S);
`union`(seq(map(t -> [x1$i, op(t)], procname(s-i*x1, S minus {x1})), i=1..`if`(x1=0, dmax, floor(s/x1))))
end proc:
R:= {2, 3, 5, 7}: count:= 4:
for s from 2 to 9*dmax-1 do
if s mod 3 = 0 then next fi;
ds:= convert(convert(s, base, 10), set);
DS:= select (t -> nops(t) > 1 and nops(t) <= dmax, dsets(s, ds));
for r in DS do
for v in remove(t -> member(t[1], [0, 2, 4, 5, 6, 8]) or t[-1]=0, combinat:-permute(r)) do
p:= add(v[i]*10^(i-1), i=1..nops(v));
if isprime(p) then R:= R union {p}; count:= count+1;
fi
od od od:
sort(convert(R, list));
PROG
(PARI) isok(p) = if (isprime(p), my(d=digits(p)); Set(d) == Set(digits(vecsum(d)))); \\ Michel Marcus, Feb 28 2023
CROSSREFS
Primes in A249515.
Sequence in context: A046478 A046475 A029978 * A122764 A256886 A195302
KEYWORD
nonn,base
AUTHOR
Robert Israel, Feb 27 2023
STATUS
approved