login
Decimal expansion of Sum_{i>=1 and i!=0 (mod 3)} 1/Fibonacci(i).
4

%I #13 Mar 03 2023 06:01:32

%S 2,6,9,6,3,8,3,5,2,7,3,1,0,1,4,9,3,5,6,0,3,6,1,3,0,2,0,6,9,6,8,9,3,3,

%T 8,8,3,9,1,3,6,3,8,8,8,2,1,0,7,4,3,8,9,5,8,1,9,2,4,4,5,3,8,9,6,4,4,8,

%U 0,1,1,5,8,5,8,2,4,2,0,0,3,3,0,9,6,0,6,1,6,7,7,1,1,3,2,4,9,2,3,6,3,4,3,8,1

%N Decimal expansion of Sum_{i>=1 and i!=0 (mod 3)} 1/Fibonacci(i).

%C Sum of reciprocals of all odd Fibonacci numbers, so Sum_{j>=0} 1/A014437(j)

%H Kevin Ryde, <a href="/A360957/b360957.txt">Table of n, a(n) for n = 1..10000</a>

%F Equals A079586 - A360958.

%e 2.6963835273101493560361302069689338...

%Y Cf. A014437, A079586, A153387, A360958.

%K cons,nonn

%O 1,1

%A _Kevin Ryde_, Feb 28 2023