%I #10 Mar 13 2023 17:47:26
%S 1,1,2,3,4,6,7,11,12,19,20,31,33,49,51,77,79,112,124,165,177,247,260,
%T 340,388,480,533,693,747,925,1078,1271,1429,1772,1966,2331,2705,3123,
%U 3573,4245,4737,5504,6424,7254,8256,9634,10889,12372,14251,16031,18379
%N Number of finite sets of positive integers whose right half (inclusive) sums to n.
%H Andrew Howroyd, <a href="/A360955/b360955.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = Sum_{w>=1} Sum_{h=w..floor((n-binomial(w,2))/w)} binomial(h,w) * A072233(n - w*h - binomial(w,2), w-1) for n > 0. - _Andrew Howroyd_, Mar 13 2023
%e The a(1) = 1 through a(8) = 12 sets:
%e {1} {2} {3} {4} {5} {6} {7} {8}
%e {1,2} {1,3} {1,4} {1,5} {1,6} {1,7} {1,8}
%e {2,3} {2,4} {2,5} {2,6} {2,7} {2,8}
%e {3,4} {3,5} {3,6} {3,7} {3,8}
%e {4,5} {4,6} {4,7} {4,8}
%e {1,2,3} {5,6} {5,7} {5,8}
%e {1,2,4} {6,7} {6,8}
%e {1,2,5} {7,8}
%e {1,3,4} {1,2,6}
%e {2,3,4} {1,3,5}
%e {1,2,3,4} {2,3,5}
%e {1,2,3,5}
%e For example, the set y = {2,3,5} has right half (inclusive) {3,5}, with sum 8, so y is counted under a(8).
%t Table[Length[Select[Join@@IntegerPartitions/@Range[0,3*k], UnsameQ@@#&&Total[Take[#,Ceiling[Length[#]/2]]]==k&]],{k,0,15}]
%o (PARI) \\ P(n,k) is A072233(n,k).
%o P(n,k)=polcoef(1/prod(k=1, k, 1 - x^k + O(x*x^n)), n)
%o a(n)=if(n==0, 1, sum(w=1, sqrt(n), my(t=binomial(w,2)); sum(h=w, (n-t)\w, binomial(h, w) * P(n-w*h-t, w-1)))) \\ _Andrew Howroyd_, Mar 13 2023
%Y The version for multisets is A360671, exclusive A360673.
%Y The exclusive version is A360954.
%Y First for prime indices, second for partitions, third for prime factors:
%Y - A360676 gives left sum (exclusive), counted by A360672, product A361200.
%Y - A360677 gives right sum (exclusive), counted by A360675, product A361201.
%Y - A360678 gives left sum (inclusive), counted by A360675, product A347043.
%Y - A360679 gives right sum (inclusive), counted by A360672, product A347044.
%Y Cf. A000009, A072233, A359893, A359901, A360674, A360956.
%K nonn
%O 0,3
%A _Gus Wiseman_, Mar 09 2023
%E Terms a(16) and beyond from _Andrew Howroyd_, Mar 13 2023