%I #8 Feb 25 2023 09:39:29
%S 1,1,1,1,1,-1,-4,-8,-13,-16,-3,39,126,273,411,283,-619,-3149,-8201,
%T -14496,-14368,12984,109920,329552,655436,785583,-312525,-5009034,
%U -16789151,-36433571,-48990090,6965306,286109557,1044072824,2414264953,3490255449,-41486331
%N G.f. satisfies A(x) = 1 + x/(1 + x^4)^2 * A(x/(1 + x^4)).
%F a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} (-1)^k * binomial(n-3*k,k) * a(n-1-4*k).
%o (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\4, (-1)^j*binomial(i-3*j, j)*v[i-4*j])); v;
%Y Cf. A352865, A360900.
%Y Cf. A360893.
%K sign
%O 0,7
%A _Seiichi Manyama_, Feb 25 2023