login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of connected dominating sets in the 2 X n rook graph.
3

%I #13 Oct 03 2024 08:05:14

%S 3,9,39,177,783,3369,14199,58977,242463,989529,4017159,16245777,

%T 65514543,263652489,1059392919,4251920577,17050729023,68332056249,

%U 273715645479,1096024843377,4387586157903,17560804984809,70274600998839,281192547174177,1125052618233183

%N Number of connected dominating sets in the 2 X n rook graph.

%H Andrew Howroyd, <a href="/A360876/b360876.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (8,-19,12).

%F a(n) = 8*a(n-1) - 19*a(n-2) + 12*a(n-3) for n > 3.

%F G.f.: 3*x*(1 - 5*x + 8*x^2)/((1 - x)*(1 - 3*x)*(1 - 4*x)).

%t LinearRecurrence[{8, -19, 12}, {3, 9, 39}, 30] (* _Paolo Xausa_, Oct 03 2024 *)

%o (PARI) Vec(3*(1 - 5*x + 8*x^2)/((1 - x)*(1 - 3*x)*(1 - 4*x)) + O(x^25))

%Y Row 2 of A360875.

%Y Cf. A360874.

%K nonn,easy

%O 1,1

%A _Andrew Howroyd_, Feb 24 2023