login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array read by antidiagonals: T(m,n) is the number of (non-null) connected induced subgraphs in the rook graph K_m X K_n.
3

%I #12 Mar 11 2023 11:30:55

%S 1,3,3,7,13,7,15,51,51,15,31,205,397,205,31,63,843,3303,3303,843,63,

%T 127,3493,27877,55933,27877,3493,127,255,14451,233751,943095,943095,

%U 233751,14451,255,511,59485,1938517,15678925,31450861,15678925,1938517,59485,511

%N Array read by antidiagonals: T(m,n) is the number of (non-null) connected induced subgraphs in the rook graph K_m X K_n.

%H Andrew Howroyd, <a href="/A360873/b360873.txt">Table of n, a(n) for n = 1..1275</a> (first 50 antidiagonals).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RookGraph.html">Rook Graph</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Vertex-InducedSubgraph.html">Vertex-Induced Subgraph</a>.

%F T(m,n) = Sum_{i=1..m} Sum_{j=1..n} binomial(m, i) * binomial(n, j) * A262307(i, j).

%F T(m,n) = T(n,m).

%e Array begins:

%e =======================================================

%e m\n| 1 2 3 4 5 6 ...

%e ---+---------------------------------------------------

%e 1 | 1 3 7 15 31 63 ...

%e 2 | 3 13 51 205 843 3493 ...

%e 3 | 7 51 397 3303 27877 233751 ...

%e 4 | 15 205 3303 55933 943095 15678925 ...

%e 5 | 31 843 27877 943095 31450861 1033355223 ...

%e 6 | 63 3493 233751 15678925 1033355223 67253507293 ...

%e ...

%o (PARI) \\ S is A183109, T is A262307, U is this sequence.

%o G(M,N=M)={ my(S=matrix(M, N), T=matrix(M, N), U=matrix(M, N));

%o for(m=1, M, for(n=1, N,

%o S[m, n]=sum(j=0, m, (-1)^j*binomial(m, j)*(2^(m - j) - 1)^n);

%o T[m, n]=S[m, n]-sum(i=1, m-1, sum(j=1, n-1, T[i, j]*S[m-i, n-j]*binomial(m-1, i-1)*binomial(n, j)));

%o U[m, n]=sum(i=1, m, sum(j=1, n, binomial(m, i)*binomial(n, j)*T[i, j])) )); U

%o }

%o { my(A=G(7)); for(n=1, #A~, print(A[n,])) }

%Y Main diagonal is A286189.

%Y Rows 1..2 are A000225, A360874.

%Y Cf. A360850, A360851, A360853, A360875.

%K nonn,tabl

%O 1,2

%A _Andrew Howroyd_, Feb 24 2023