login
A360856
a(n) = [x^n](1/2)*(1 + (2*x + 1)/sqrt(1 - 8*x^2*(x + 1))).
0
1, 1, 2, 6, 16, 48, 140, 424, 1280, 3920, 12032, 37184, 115248, 358624, 1118784, 3499584, 10969344, 34450944, 108377984, 341465344, 1077300224, 3403006464, 10761447424, 34065967104, 107937899264, 342293526016, 1086339120128, 3450236511232, 10965437349888
OFFSET
0,3
FORMULA
a(n) = (4*(2*n^2 - 11*n + 15)*a(n - 3) + 4*(2*n^2 - 9*n + 9)*a(n - 2) + 2*(n - 3)*a(n - 1)) / (n^2 - 3*n) for n >= 4.
MAPLE
gf := (1/2)*(1 + (2*x + 1)/sqrt(1 - 8*x^2*(x + 1)));
ser := series(gf, x, 30): seq(coeff(ser, x, n), n = 0..28);
# Recurrence:
a := proc(n) option remember; if n < 4 then return [1, 1, 2, 6][n + 1] fi:
(4*(2*n^2 - 11*n + 15)*a(n - 3) + 4*(2*n^2 - 9*n + 9)*a(n - 2) + 2*(n - 3)*a(n - 1)) / (n^2 - 3*n) end: seq(a(n), n = 0..28);
CROSSREFS
Cf. A360571.
Sequence in context: A045694 A225178 A129772 * A046721 A230929 A367042
KEYWORD
nonn
AUTHOR
Peter Luschny, Feb 28 2023
STATUS
approved