login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360856
a(n) = [x^n](1/2)*(1 + (2*x + 1)/sqrt(1 - 8*x^2*(x + 1))).
0
1, 1, 2, 6, 16, 48, 140, 424, 1280, 3920, 12032, 37184, 115248, 358624, 1118784, 3499584, 10969344, 34450944, 108377984, 341465344, 1077300224, 3403006464, 10761447424, 34065967104, 107937899264, 342293526016, 1086339120128, 3450236511232, 10965437349888
OFFSET
0,3
FORMULA
a(n) = (4*(2*n^2 - 11*n + 15)*a(n - 3) + 4*(2*n^2 - 9*n + 9)*a(n - 2) + 2*(n - 3)*a(n - 1)) / (n^2 - 3*n) for n >= 4.
MAPLE
gf := (1/2)*(1 + (2*x + 1)/sqrt(1 - 8*x^2*(x + 1)));
ser := series(gf, x, 30): seq(coeff(ser, x, n), n = 0..28);
# Recurrence:
a := proc(n) option remember; if n < 4 then return [1, 1, 2, 6][n + 1] fi:
(4*(2*n^2 - 11*n + 15)*a(n - 3) + 4*(2*n^2 - 9*n + 9)*a(n - 2) + 2*(n - 3)*a(n - 1)) / (n^2 - 3*n) end: seq(a(n), n = 0..28);
CROSSREFS
Cf. A360571.
Sequence in context: A045694 A225178 A129772 * A046721 A230929 A367042
KEYWORD
nonn
AUTHOR
Peter Luschny, Feb 28 2023
STATUS
approved