%I #12 Feb 20 2023 12:27:25
%S 1,1,1,1,3,7,13,24,55,133,301,678,1639,4120,10253,25591,65869,173551,
%T 459493,1225379,3325123,9162046,25451181,71296499,202144225,579612934,
%U 1675822453,4885178596,14376297345,42690792651,127757371105,385241085261,1170960103855
%N Expansion of Sum_{k>=0} x^k / (1 - k*x^3)^(k+1).
%F a(n) = Sum_{k=0..floor(n/3)} (n-3*k)^k * binomial(n-2*k,k).
%o (PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-k*x^3)^(k+1)))
%o (PARI) a(n) = sum(k=0, n\3, (n-3*k)^k*binomial(n-2*k, k));
%Y Cf. A000248, A360782.
%Y Cf. A000930.
%K nonn,easy
%O 0,5
%A _Seiichi Manyama_, Feb 20 2023