login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Sum_{k>=0} (x^2 / (1 - k*x))^k.
4

%I #17 Feb 20 2023 07:36:28

%S 1,0,1,1,2,5,14,42,136,479,1825,7433,32053,145608,695081,3479117,

%T 18209842,99373513,563920590,3320674902,20255823092,127799984935,

%U 832807892861,5597481205009,38753768384761,276057156622776,2021100095469577,15193591060371577

%N Expansion of Sum_{k>=0} (x^2 / (1 - k*x))^k.

%H Winston de Greef, <a href="/A360708/b360708.txt">Table of n, a(n) for n = 0..630</a>

%F a(n) = Sum_{k=1..floor(n/2)} k^(n-2*k) * binomial(n-k-1,k-1) for n > 0.

%t Join[{1},Table[Sum[Binomial[n-k-1,k-1] * k^(n-2*k), {k,0,n/2}], {n,1,40}]] (* _Vaclav Kotesovec_, Feb 20 2023 *)

%o (PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (x^2/(1-k*x))^k))

%o (PARI) a(n) = if(n==0, 1, sum(k=1, n\2, k^(n-2*k)*binomial(n-k-1, k-1)));

%Y Cf. A080108, A360709.

%Y Cf. A000248, A360699.

%K nonn

%O 0,5

%A _Seiichi Manyama_, Feb 17 2023