%I #6 Feb 24 2023 21:46:55
%S 0,0,1,1,4,3,8,6,13,11,21,17,34,36,55,61,97,115,162,191,270,328,427,
%T 514,666,810,1027,1211,1530,1832,2260,2688,3342,3952,4824,5746,7010,
%U 8313,10116,11915,14436,17074,20536,24239,29053,34170,40747,47865,56830,66621
%N Number of integer partitions of n whose distinct parts have non-integer median.
%C The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
%e The a(1) = 0 through a(9) = 13 partitions:
%e . . (21) (211) (32) (411) (43) (332) (54)
%e (41) (2211) (52) (611) (63)
%e (221) (21111) (61) (22211) (72)
%e (2111) (322) (41111) (81)
%e (2221) (221111) (441)
%e (4111) (2111111) (522)
%e (22111) (3222)
%e (211111) (6111)
%e (22221)
%e (222111)
%e (411111)
%e (2211111)
%e (21111111)
%e For example, the partition y = (5,3,3,2,1,1) has distinct parts {1,2,3,5}, with median 5/2, so y is counted under a(15).
%t Table[Length[Select[IntegerPartitions[n],!IntegerQ[Median[Union[#]]]&]],{n,30}]
%Y For not just distinct parts: A307683, complement A325347, ranks A359912.
%Y These partitions have ranks A360551.
%Y The complement is counted by A360686, strict A359907, ranks A360550.
%Y For multiplicities instead of distinct parts we have A360690, ranks A360554.
%Y A000041 counts integer partitions, strict A000009.
%Y A116608 counts partitions by number of distinct parts.
%Y A359893 and A359901 count partitions by median, odd-length A359902.
%Y A360457 gives median of distinct prime indices (times 2).
%Y Cf. A000975, A027193, A090794, A240219, A349156, A360005, A360071, A360241, A360244, A360245.
%K nonn
%O 1,5
%A _Gus Wiseman_, Feb 22 2023