Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Feb 12 2023 04:53:44
%S 1,5,2,28,20,3,165,168,50,4,1001,1320,588,100,5,6188,10010,5940,1568,
%T 175,6,38760,74256,55055,19800,3528,280,7,245157,542640,482664,220220,
%U 54450,7056,420,8,1562275,3922512,4069800,2252432,715715,130680,12936,600,9
%N Triangle read by rows: T(n, m) = (n+1-m)*C(2*n+2-m, m)*C(3*n-3*m+2, n-m+1)/(2*n-m+2).
%F G.f.: -1/(2*x) + (sqrt(3)*cot((1/3)*arcsin((3*sqrt(3)*sqrt(x))/(2- 2*x*y))))/ (2*sqrt(x*(-27*x + 4*(-1+x*y)^2))).
%e Triangle begins:
%e 1;
%e 5, 2;
%e 28, 20, 3;
%e 165, 168, 50, 4;
%e 1001, 1320, 588, 100, 5;
%e 6188, 10010, 5940, 1568, 175, 6;
%p A360546 := proc(n, k) m := n-k+1; (1/3)*binomial(3*m, m)*binomial(m + n, k) end:
%p seq(print(seq(A360546(n, k), k = 0..n)), n = 0..8); # _Peter Luschny_, Feb 11 2023
%o (Maxima)
%o T(n,m):=if n<m then 0 else ((n+1-m)*binomial(2*n+2-m,m)*binomial(3*n-3*m+2,n-m+1))/(2*n-m+2);
%Y Cf. A025174, A134481.
%K nonn,tabl
%O 0,2
%A _Vladimir Kruchinin_, Feb 11 2023