login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 2-color vertex orderings of the labeled cycle graph on 2*n vertices.
4

%I #16 Feb 27 2023 22:52:08

%S 0,24,480,18816,1175040,107796480,13630955520,2273062256640,

%T 483283797147648,127601594573783040,40960778432654868480,

%U 15710045049427958169600,7095139411569155034316800,3726944074638630907382071296,2252901869996867025766994411520,1552830650080006456164417892515840

%N Number of 2-color vertex orderings of the labeled cycle graph on 2*n vertices.

%C Bouwer and Star give a recurrence.

%D Bouwer, I., and Z. Star. "A question of protocol." The American mathematical monthly 95.2 (1988): 118-121. See C(n).

%H Andrew Howroyd, <a href="/A360517/b360517.txt">Table of n, a(n) for n = 1..200</a>

%F a(n) = 4*n*(n - 1)*(2*n - 1)*A360514(2*n - 3) for n > 1. - _Andrew Howroyd_, Feb 27 2023

%o (PARI) \\ Needs A360514seq from A360514.

%o seq(n) = {my(v=A360514seq(2*n-1)); vector(n, n, if(n>1, 4*n*(n-1)*(2*n-1)*v[2*n-3]))} \\ _Andrew Howroyd_, Feb 27 2023

%Y Cf. A360514, A360515, A360516.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Feb 27 2023.

%E Terms a(6) and beyond from _Andrew Howroyd_, Feb 27 2023