login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360341
a(n) = coefficient of x^n*y^(3*n+1)/n! in log( Sum_{n>=0} (n + y)^(5*n) * x^n/n! ).
3
1, 10, 285, 14240, 1036225, 99774720, 11995938325, 1732780710400, 292580972777025, 56581144474976000, 12335796889894262125, 2994228576573719040000, 800930404887937807458625, 234113078032084301026816000, 74248479783538967821383793125, 25394786139647229685682094080000
OFFSET
1,2
LINKS
FORMULA
E.g.f. A(x) = Sum_{n>=1} a(n)*x^n/n! may be defined as follows.
(1) A(x) = Limit_{N->oo} (1/N) * log( Sum_{n>=0} (N + n)^(5*n) * (x/N^4)^n/n! ).
(2) a(n) = [x^n*y^(3*n+1)/n!] log( Sum_{n>=0} (n + y)^(5*n) * x^n/n! ).
a(n) ~ c * d^n * n! / n^(5/2), where d = (25/16) * (5 + 2*sqrt(5)) * exp(5 - 2*sqrt(5)) = 25.090908742294025045771061662375185533388200826641029119554... and c = 1/(8*sqrt((1 + 2/sqrt(5))*Pi)) = 0.05123846578813482717849518499100286... - Vaclav Kotesovec, Feb 12 2023, updated Mar 20 2024
EXAMPLE
E.g.f.: A(x) = x + 10*x^2/2! + 285*x^3/3! + 14240*x^4/4! + 1036225*x^5/5! + 99774720*x^6/6! + 11995938325*x^7/7! + 1732780710400*x^8/8! + ... + a(n)*x^n/n! + ...
where a(n) equals the coefficient of y^(4*n+1)*x^n/n! in the series given by
log( Sum_{n>=0} (n + y)^(5*n) * x^n/n! ) = (y^5 + 5*y^4 + 10*y^3 + 10*y^2 + 5*y + 1)*x + (10*y^9 + 135*y^8 + 840*y^7 + 3150*y^6 + 7812*y^5 + 13230*y^4 + 15240*y^3 + 11475*y^2 + 5110*y + 1023)*x^2/2! + (285*y^13 + 6985*y^12 + 82800*y^11 + 626640*y^10 + 3365015*y^9 + 13480875*y^8 + 41269545*y^7 + 97340225*y^6 + 176218089*y^5 + 241023105*y^4 + 241403365*y^3 + 167262045*y^2 + 71713845*y + 14345837)*x^3/3! + (14240*y^17 + 535150*y^16 + 9965360*y^15 + 121806600*y^14 + 1090732800*y^13 + 7563031080*y^12 + 41870604200*y^11 + 188252006020*y^10 + 693127766960*y^9 + 2094270509580*y^8 + 5176075514880*y^7 + 10375810342800*y^6 + 16622405553984*y^5 + 20792525880990*y^4 + 19576849364160*y^3 + 13053873999580*y^2 + 5496952909520*y + 1099451098702)*x^4/4! + ...
Exponentiation yields the e.g.f. of A266484:
exp(A(x)) = 1 + x + 11*x^2/2! + 316*x^3/3! + 15741*x^4/4! + 1140376*x^5/5! + 109350271*x^6/6! + 13100626176*x^7/7! + 1886686497401*x^8/8! + ... + A266484(n)*x^n/n! + ...
which equals
lim_{N->oo} [ Sum_{n>=0} (N + n)^(5*n) * (x/N^4)^n/n! ]^(1/N).
RELATED SEQUENCES.
a(n) is divisible by n where a(n)/n begins:
[1, 5, 95, 3560, 207245, 16629120, 1713705475, 216597588800, ...].
PROG
(PARI) /* Using logarithmic formula */
{a(n) = n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m + y)^(5*m) *x^m/m! ) +x*O(x^n) ), n, x), 4*n+1, y)}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 10 2023
STATUS
approved