login
Determinant of the pentadiagonal symmetric nXn Toeplitz Matrix with a=3, b=c=1.
0

%I #4 Jan 31 2023 06:50:57

%S 1,3,8,20,48,115,273,648,1536,3640,8625,20435,48416,114708,271768,

%T 643875,1525473,3614160,8562688,20286768,48063521,113872355,269787000,

%U 639180820,1514350656,3587807763

%N Determinant of the pentadiagonal symmetric nXn Toeplitz Matrix with a=3, b=c=1.

%H J. Borowska, L. Lacinska, <a href="https://doi.org/10.17512/jamcm.2014.4.03">Recurrence form of determinant of a heptadiagonal symmetric Toeplitz matrix</a>, J. Appl. Math. Comp. Mech. 13 (2014) 19-16, remark 1 with a=3, b=c=1.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,-2,-2,1).

%F G.f.: ( -1-x ) / ( (x-1)*(x^4-x^3-3*x^2-x+1) ).

%F a(n)= 2*a(n-1) +2*a(n-2) -2*a(n-3) -2*a(n-4) +a(n-5).

%K nonn,easy

%O 0,2

%A _R. J. Mathar_, Jan 31 2023