login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Determinant of the pentadiagonal symmetric nXn Toeplitz Matrix with a=b=1, c=3.
0

%I #6 Jun 10 2024 00:17:16

%S 1,1,0,-4,56,177,25,-248,1536,19448,10025,2313,-78584,1525084,2046000,

%T 1990649,-12721279,80406480,282880000,276053680,-672007599,1449521681,

%U 28914914000,32747999676,14429332456,-221875825343

%N Determinant of the pentadiagonal symmetric nXn Toeplitz Matrix with a=b=1, c=3.

%H J. Borowska, L. Lacinska, <a href="https://doi.org/10.17512/jamcm.2014.4.03">Recurrence form of determinant of a heptadiagonal symmetric Toeplitz matrix</a>, J. Appl. Math. Comp. Mech. 13 (2014) 19-16, remark 1 with a=b=1, c=3.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (-2,2,-6,54,243).

%F G.f. ( -1-3*x ) / ( (3*x-1)*(81*x^4+45*x^3+13*x^2+5*x+1) ).

%F a(n)= -2*a(n-1) +2*a(n-2) -6*a(n-3) +54*a(n-4) +243*a(n-5).

%K sign,easy

%O 0,4

%A _R. J. Mathar_, Jan 31 2023