login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of vertices in a Farey fan of order n.
8

%I #18 Jan 30 2023 10:34:33

%S 4,6,11,17,29,39,59,79,107,133,175,213,271,323,385,451,541,621,731,

%T 835,955,1073,1225,1367,1541,1707,1897,2087,2321,2535,2801,3061,3345,

%U 3625,3937,4243,4609,4957,5335,5713,6155,6569,7055,7529,8031,8531,9101,9649,10265,10859

%N Number of vertices in a Farey fan of order n.

%C See the reference for the definition of a 'Farey fan'.

%C The number of vertices along each edge is A005728(n), while the number of regions is conjectured to equal A005598(n) = 1 + Sum_{i=1..n} (n-i+1)*phi(i). The regions count the number of distinct approximate representations of straight lines y = mx + b that can be drawn on an x-y integer raster, where x, y, and b are restricted to [0,n) and 0 <= m <=1.

%C It is also worth noting that for 3 <= n <= 10 this sequence equals 2*A005728(n) + A174030(n-2), where A174030(n) = Sum_{i=1..n} (i where phi(i)|i). That is, the number of internal vertices of the Farey fan equals A174030(n) in this range. This may suggest a possible attack on finding a formula for the present sequence.

%H M. Douglas McIlroy, <a href="https://doi.org/10.1002/j.1538-7305.1985.tb00359.x">A Note on Discrete Representation of Lines</a>, AT&T Technical Journal, 64 (1985), 481-490.

%H Scott R. Shannon, <a href="/A360042/a360042.png">Image for n = 2</a>.

%H Scott R. Shannon, <a href="/A360042/a360042_1.png">Image for n = 3</a>.

%H Scott R. Shannon, <a href="/A360042/a360042_2.png">Image for n = 4</a>.

%H Scott R. Shannon, <a href="/A360042/a360042_3.png">Image for n = 5</a>.

%H Scott R. Shannon, <a href="/A360042/a360042_4.png">Image for n = 6</a>.

%H Scott R. Shannon, <a href="/A360042/a360042_5.png">Image for n = 10</a>.

%Y Cf. A005598 (regions), A360043 (edges), A360044 (k-gons), A005728, A174030, A359974, A359968, A359690.

%K nonn

%O 1,1

%A _Scott R. Shannon_, _N. J. A. Sloane_ and _M. Douglas McIlroy_ Jan 23 2023